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Bounding The Edge Cover Time
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In recent years a great deal of attention has been focused on answering

questions regarding the cover times of random walks on simple graphs. In

this dissertation we answer questions about the edge cover time of such walks.

We begin by reviewing many of the definitions and established results for

vertex cover time. We present the little that has been published regarding

bounds on the edge cover time. Having completed this review we establish a

new, and sometimes more useful, global upper bound for edge cover time.

We then narrow our focus and consider the edge cover time of the path.

We establish an exact description of the edge cover time for a random walk

on the path started at an endpoint in terms of coefficients related to the

Bernoulli Numbers of the Second Kind. Studying these coefficients carefully

allows us to develop a tight bound on this cover time of (n-1)2+e(n2/ log n).

Using these results, and generalizing, provides a description of the edge cover



time for walks on the path started from an arbitrary vertex. This general-

ization gives us a bound of (5/4) (n - 1)2 + O(n 2/ log n) for the edge cover

time for the path.

Having established a tight bound for walks on paths we then focus on

other trees. We prove that the edge cover time for a random walk started

from the center of a star graph minimizes edge cover time for walks on all

trees on n vertices. We also establish the fact that in all graphs the edge

cover time for a walk started from a leaf is always greater than for a walk

started from its point of attachment. We continue our study of trees by

establishing a global upper bound on the edge cover time for all trees and

use it to study balanced k-ary trees.

Finally we show the connection between our previous developments for

the edge cover time for paths and that of the edge cover time on the cycle.

This leads to a tight bound for the undirected and directed edge cover times

of this graph.
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Summary

In recent years a great deal of attention has been focused on answering ques-

tions regarding the cover times of random walks on simple graphs. In this

dissertation we answer questions about the edge cover time of such walks.

We begin by reviewing many of the definitions and established results for

vertex cover time. We present the little that has been published regarding

bounds on the edge cover time. Having completed this review we establish a

new, and sometimes more useful, global upper bound for edge cover time.

We then narrow our focus and consider the edge cover time of the path.

We establish an exact description of the edge cover time for a random walk

on the path started at an endpoint in terms of coefficients related to the

Bernoulli Numbers of the Second Kind. Studying these coefficients carefully

allows us to develop a tight bound on this cover time of (n-1)2 +O(n 2/ log n).

Using these results, and generalizing, provides a description of the edge cover

time for walks on the path started from an arbitrary vertex. This general-

ization gives us a bound of (5/4)(n - 1)2 + O(n 2/ log n) for the edge cover

time for the path.
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Having established a tight bound for walks on paths we then focus on

other trees. We prove that the edge cover time for a random walk started

from the center of a star graph minimizes edge cover time for walks on all

trees on n vertices, paralleling a result for vertex cover time on trees. In

the process of proving this we also establish the fact that in all graphs the

edge cover time for a walk started from a leaf is always greater than for a

walk started from its point of attachment. We continue our study of trees by

establishing a global upper bound on the edge cover time for all trees and use

it to study balanced k-ary trees. Our study of the star also leads to alternate

proofs for two identities involving the Stirling Numbers of the Second Kind.

Finally we show the connection between our previous developments for

the edge cover time for paths and that of the edge cover time on the cycle.

This leads to a tight bound for the undirected and directed edge cover times

of this graph.

xii



CHAPTER I

DEFINITIONS AND KNOWN
RESULTS FOR VERTEX COVER

TIME

1.1 Definitions

A graph, G, consists of a pair of sets {V, E}. The elements of the set V

are known as vertices. The elements of E are known as edges and consist

of unordered pairs of the elements of V. In this thesis we will consider only

finite simple graphs, so V will be a finite set, and E will contain only distinct

pairs from V in which each element of the pair is also distinct. We will follow

common convention and normally indicate the size of the vertex set by n and

the size of the edge set by m. The neighbors of a vertex x are the elements

of the set {y : 3{x, y} E E}. The degree of a vertex x, d(x), is the cardinality

of the neighbor set of x. We will also discuss the directed version of G in

which we replace each element, {x, y}, of the set E by two ordered pairs,
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(x, y) and (y, x). In this case we may make use of the indegree, d- (x) or

outdegree, d+(x), of a vertex x. However, due to the method of construction

of the graph it is clear that d+ (x) = d (x) = d(x). We will rely on the usual

definitions of other graph concepts such as whether a graph is connected,

bipartite or acyclic, etc. A standard reference for these concepts is Bondy

and Murty[5].

A discrete Markov chain is a stochastic process in which

Pf{Xn-X, _ 2, . .. ,xo} -- PI{XXi},

and this probability is independent of n. The set of possible outcomes for X,

is known as the state space of the chain. We will denote by pi,j the probability

P{X, j X, 1I = i}. If P = [pi,j] is the state transition probability matrix

for an n state discrete Markov chain, the chain is irreducible if for each pair,

{i, j}, of elements of the state space there exists some integer, k{ j}, such that

the i, j entry of pkjjj is nonzero. The probability vector, 7r, is the stationary

distribution for an irreducible Markov chain if Vj, 7rj > 0, i rj 1, and

7rP = 7r. A Markov chain is reversible if for all i and j in the state space

7ripij = 7rjpj,i.

A random walk on a connected graph C = {V, E} is a reversible, irre-

ducible Markov chain with state space V and for which p,,y 1/d(x) when

there is an edge {x, y} in E and px,y = 0 otherwise. One may think of this

2



as placing a token on a vertex of the graph and then observing it as at each

time step it moves uniformly at random to some neighbor of its present po-

sition. This definition may be generalized to cases in which the transition

probabilities at each vertex are not uniform, but we will not address this case.

The classical example of a random walk on a graph is the "gambler's ruin

problem." If one considers a fair game, i.e. one in which the probabilities

of success and failure are the same, then gambler's ruin can be viewed as

placing a token at some nonnegative point on the natural number line and

asking how long before the token will reach either 0 or some predetermined

upper limit when each play of the game results in a gain or loss of 1 unit.

Throughout this dissertation we will discuss random variables whose value

may depend on the starting point of the walk. For a random variable X, we

will denote the expected value of X for a walk started at vertex z by E2 X.

The hitting time from x to y, ExHy, is the expected number of steps it will

take for the token to move from vertex x to vertex y. Note that it is not

generally the case that EHy = EyHx. We will denote by H the maximum

hitting time for all pairs of vertices, i.e. H m maxx,yEvEHy. The commute

time between vertices x and y is Cx,y = ExHy + EyHx

Given a starting vertex x, and counting this placement as a visit to x, one

may ask: What is the expected number of steps needed to ensure the random

3



walk has visited all the vertices of the graph at least once? The vertex cover

time, C', is the maximum of this value over all starting points x. One may

modify the question slightly and ask: What is the expected number of steps

to visit all the vertices and then return to the starting point? This time is

called the vertex cover and return time.

We will also use the following notation to describe the growth of a func-

tion. When f and g are nonnegative valued functions we define f(n)

O(g(n)) if 3 N and c, E Vn > N, f(n) < cg(n). Likewise f(n) = Q(g(n))

if 3 N and c,D Vn > N,f(n) cg(n). Define f(n) = ®(g(n)) if f(n) =

Q(g(n)) and f(n) = O(g(n)). Finally f(n) = o(g(n)) if lim_ f(n)/g(n) =

0.

1.2 Results for Vertex Cover Time

In recent years a good deal of research has been devoted to questions regard-

ing the hitting and vertex cover times of random walks on graphs. Unfortu-

nately, there are only a few cases where the quantities are easily computed

exactly. The following well known recursive argument provides the hitting

time from one endpoint to the other of a path with n vertices.

Assume that the vertices of the path are labeled in the natural way from 1

to n. Define aj to be the expected number of steps needed, starting at

4



vertex j, to first reach vertex n. Clearly an = 0. Then since a walk started

at vertex 1 steps to vertex 2 with probability 1 on its first step we must have

a1 1 +a 2.

Finally for 1 < j < n we have

aj = -(1 + aj_,) + + aj+l).
22

Now we have a second order recursion with two boundary conditions whose

solution provides the closed form description

aj = (n- 1)2 - (j- 1)2.

Thus E1jH = (n - 1)2.

Using a similar recursive argument one may establish that the vertex cover

time for a walk started at vertex j is (5/4) (n - 1)2 - (1/4) (n - 2j + 1)2. This

quantity is maximized by a walk started at the center/centers of the path,

and has value (5/4)(n - 1)2 there when n is odd. Another graph for which

a recursive argument provides the vertex cover time is the cycle, resulting in

(n) for the n vertex cycle.

A further simple graph one may consider is the Star, Sn, consisting of

n - 1 vertices of degree 1 and a single vertex of degree n - 1. In this case a

"coupon collector" type argument provides the exact vertex cover time.

5



Consider a walk on S, started at a leaf. Then one may consider the

leaves of the star to be coupons. On every second step a coupon will be

chosen. Upon first acquiring the jth new coupon consider how many steps,

on average, one must take to acquire the (j + 1)st. Having acquired j distinct

coupons, with probability (j - 1)/(n- 1) one takes two steps and returns

to a leaf already visited, otherwise, with probability (n - j - 1)/(n - 1) one

takes two steps and acquires a new coupon. Thus for j _> 1, if cj represents

the number of steps to acquire the (3 + 1)st coupon, we have

-i _ (2 + c+n (2),n- n-1i

which has solution

cj = 2n- 1

Then
n-2

Elaf Cv = 2(n - 1) E ( 1) =2(n-1)hn- 2,j=l (n -j -

k
where hk E (1/j), the kt harmonic number. It is easy to see that if a

j=1

walk starts from the center of S-, it would take one step to reach a leaf and

then accomplish a vertex cover as if it had started at that leaf. Thus for Sn,

C = 2(n - 1)h,- 2 + 1.

Brightwell and Winkler[7] established that the vertex cover time for all

trees on n vertices is minimized by the star. They conjectured that a random

6



walk on the path when started from the center/centers maximizes vertex

cover time for trees, but this has yet to be proved.

Modifying the "coupon collector" argument above only slightly results

in an easy proof that the vertex cover time for the clique on n vertices is

(n - 1)h_ 1 .

Brightwell and Winkler[6] determined the graph which maximizes hitting

time among all graphs. This graph is known as the "lollipop" and consists of

a clique on approximately 2n/3 vertices attached to a path on the remaining

vertices. They proved that the hitting time in this graph is maximized by

starting at a vertex in the clique and proceeding to the tail of the path.

The hitting time for such a walk is (4/27 + o(1))n 3 . They conjectured that

this graph also maximized vertex cover time for all graphs. Fiege[13] has

proved that the maximum vertex cover time for all graphs is bounded above

by (4/27)n3 + 0(n25 ) lending credence to that conjecture.

Since there are few graphs for which it has been possible to compute

hitting or vertex cover times exactly, a good deal of work has been done to

establish bounds on these quantities. One of the earliest bounds for vertex

cover time is a consequence of a more general theorem due to Matthews[20].

This result provides an upper bound on the vertex cover time based on the

maximum hitting time of the graph.

7



Theorem 1.1 If G has n vertices then

C' < Hhn ,- Hlogn (1.1)

Matthews developed this result using Markov chain theory while studying

Brownian motion on the sphere. While it proves to be too generous in some

cases there are a number of "natural" cases in which it is tight. One such

example is the hypercube for which Aldous[1] proved a cover time bound of

E (n log n). Another is the balanced k-ary tree for which Zuckerman proved

C' = OE(n log 2 n).

Doyle and Snell[ I1] make an elegant connection between the theory of re-

sistor/capacitor networks and random walks on graphs. Building on this

foundation Chandra[9] et al. prove that the cover time for d-regular ex-

pander graphs is E (n log n). They also use this theory to establish bounds of

O(n log2 n) for 2 dimensional toruses and O(n log n) for d dimensional toruses

where d > 2 and n = kd for some integer k. Matthews bound is tight in all

these cases as well.

While attempting to prove the existence of universal traversal sequences

Aleliunas[3] et al. established perhaps the first general upper bound on the

vertex cover time.

Theorem 1.2

C < 1). (1.2)



Here, as usual, n denotes the number of vertices in the graph, and m the

number of edges. Their technique made use of the fact that, the commute time

between any pair of adjacent vertices in a graph is bounded by 2m. They

observed that if one takes any spanning tree of a graph and any specific

vertex x, there is a covering walk which begins and ends at x and traverses

each edge of the spanning tree exactly once in each direction. Then the vertex

cover time is bounded above by the average time for a walk to cover all the

vertices of the graph in the order imposed by this walk. The amount of time

necessary for such a walk is just the sum of the commute times for each pair

of adjacent vertices in the spanning tree which is bounded by 2m(n - 1).

A trivial lower bound for the vertex cover time of all graphs is n. Fiege[14]

has proven the following lower bound which is tight for several classes of

graphs.

C' > nlogn. (1.3)

Other authors have proved bounds on the vertex cover time for specific

classes of graphs using the properties of regularity, the average or maximum

degree, and the diameter of the graph. Aldous has collected these, and much

more about reversible Markov chains, in several chapters of a book[2] yet to

be published.
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CHAPTER II

A NEW BOUND ON THE EDGE

COVER TIME

2.1 Definitions and Known Results

Given the interest in vertex cover time it is only natural to ask the question

in terms of edges as well. That is, given a starting point x, what is the

expected number of steps necessary to ensure that the token has traversed

every edge of G at least once. The undirected edge cover time, C"' , is the

maximum over all starting points of this value. The directed edge cover time,

C6, is the maximum over all starting points for this value when one asks the

question in terms of traversing each edge of G in both directions. In this

work we will concentrate on answering some of the questions related to these

quantities.

There appears to be relatively little in the literature about the edge cover

time. One of the few results is a global bound due to Zuckerman[27].
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Theorem 2.1 The directed edge cover time for a graph G is O(nm).

In his paper Zuckerman actually establishes two upper bounds. The first

is the "natural" bound derived from Matthews [20] results. It is easy to argue

that the maximum hitting time from one directed edge to another in a graph

is bounded above by (2m + H). Thus, using Matthews' result, and the fact

that the sequence of directed edges traversed during a random walk also forms

a Markov chain, one obtains C= O((m + H) log 7n). Zuckerman points out

that this bound is tight for those graphs having C" = O(Hlogn), such as

cliques, hypercubes, and k-dimensional toruses. However, in the general case

this natural bound yields 0(nmlogn). The path is an example where this

fails to be tight, for it is clear that the edge cover time for a path is bounded

by 2n', while this bound provides only O(n2 log n).

In order to remove the extra log n factor in the "natural" bound Zuck-

erman makes use of a renewal type argument to show that Ce = 0(k(CV +

ml+l/k)), for any integer k. Letting k = 2 here provides the O(mn) bound.

This yields bounds of O(n 2) for the path and 0(n') for the "lollipop," which

are tight. However, this also yields 0(0&), with a > 2, for the clique. This

exceeds the "natural" bound of O(n 2 logn), which is also tight. The fact

that neither of these bounds is tight in all known cases led us to search for

another means to bound the edge cover time.
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2.2 A New Global Upper Bound

Intuitively, if one focuses on the edges emanating from a specified vertex x,

then the amount of time necessary to traverse all the edges out of x may be

found by a "coupon collector" argument. It is well known that the expected

amount of time to collect all of the coupons in a set of size n is approximately

n log n. Thus it seems plausible that if we visit vertex x a constant multiple

of d(x) log d(x) times, then with high probability we should have traversed

all the edges out of x. Now if we consider a regular graph of degree d with n

vertices and m = dn directed edges, and if we were near stationarity, then,

since the stationary distribution has 7rj = d/m, Vj, the number of steps, k,

needed would be given by

k () dlogd = k ; mlogd.

Since d < n this would indicate that k P dn log n should certainly suffice in

such cases. The question becomes: Is there a way to quantify, in the general

case, how many times one has visited each vertex on a "long" walk through

the graph?

We know that eventually the frequency with which each vertex is visited

approaches the value determined by the stationary distribution. Winkler

and Zuckerman[25] have defined the blanket time of a graph, B,, to be the

expected time for a random walk to have hit every vertex of G within a
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multiplicative constant factor, E < 1, of the number of times predicted by

the stationary distribution. Specifically, letting N(t) be the number of times

vertex x is visited by time t, they define B, min{t : (Vx)N,(t) > (1-c)irxt},

and set B, = maxXEV ExB,. Clearly B, Q(Cv). They conjecture that

B, = O(Cv). They prove their conjecture in the cases of the path, the cycle,

and those graphs for which CV = O(H log n).

Using the concept of Blanket Time and letting d = (Zxv d(x)) /n, the

average degree of a vertex in the graph, we now claim:

Theorem 2.2

C'=0d,.(2.1)

Proof

Since B, is an expected value, we know from Markov's Inequality that

Vc > 0,
1

P{3x E V E Nx(cdB,) < (I - c)irxcdB} < -< . (2.2)

Thus with probability 1 - 1/cd we have Vx E V, Nx(cdB,) c) (1 - ) rxcdB.

On each visit to a vertex x the probability that a specified directed edge,

say (x, y), is not traversed on the next step of the walk is

Pr[edge (x, y) is not traversed] ( - )1 <ed .
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Therefore

Pr[edge (x, y) is not traversed after q visits to x] < ew.

So in those cases where, after taking q = c(B, steps(c to be chosen later),

we have "blanketed" we have

Pr[edge (x, y) is not traversed after cdB, steps] < e d(m)

Using the fact that r., = d(x)/m we have

-(1 -)cJB

Pr[edge (x, y) is not traversed after cB, steps] < e

Note that this value is independent of the particular edge we are considering

so

-(1-e)cJB,

Pr[3 an edge (x, y) which is not traversed after cdB, steps] < me

Using the fact that m =dn we have

Pr[] an edge (x, y) which is not traversed after cdB, steps] < dne .

Combining this with B, > CV and inequality(1.3) yields

Pr[3 an edge (x, y) which is not traversed after cdB, steps] <dnl- (1- E)c.

Then since d < n, and if we restrict c < (1/2), we observe that choosing c > 6

provides an upper bound of 1/n on this probability. If we restrict ourselves
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to considering graphs on n > 12 vertices, and combine this probability with

that in equation(2.2), we may now claim that

Pr[we have not traversed all edges after 12dB, steps] < -.

6

Using the independence properties of random walks we may then say

Pr[Number of steps to complete an edge cover > j12d-B, steps] <

This fact provides the result in our theorem.

If Winkler and Zuckerman's conjecture that B, = O(Cv) is correct, then

we have the new general bound for the edge cover time, Q(dCv). Unfortu-

nately this bound proves to overestimate the order of the edge cover time on

the lollipop. Winkler and Zuckerman have proved however, that the "blan-

ket" time is O(C") in all the "natural" cases such as cliques, hypercubes

and expanders, as well as for the path and cycle. Thus we may use O(dC ' )

in those cases, which turns out to be an improvement over using either of

Zuckerman's bounds in isolation.
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CHAPTER III

THE DIRECTED EDGE COVER
TIME OF A WALK ON THE PATH

3.1 Starting from an Endpoint

It was mentioned in Chapter 1 that one of the classical examples of a random

walk is the "Gambler's Ruin Problem," a probabilistic game played on the

path. We also mentioned that the path is conjectured to be the graph which

maximizes vertex cover time for walks on trees. The path also plays a central

role in questions concerning directed edge cover times. In this chapter we

determine the directed edge cover time for a walk begun at an endpoint of

a path. We also obtain a bound on the directed edge cover time for a walk

begun at any point of the path and show that, as for the vertex cover time,

this quantity is maximized for a walk begun at the center of the path, when

it is long enough. (Somewhat surprisingly, however, the directed edge cover

time is not minimized by starting at an endpoint.)
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We will use P, to denote the path on the integers [1 ... in]. That is the

tree on the vertex set [1 ... n] in which for 1 < j < n there are edges {j- 1,j}

and {j,j + 1}. We will first investigate the edge cover time for a random

walk on P, which starts from an endpoint. We will consider the endpoint at

which the walk starts to be labeled vertex 1 and the other endpoint to be

vertex n.

It is obvious that the undirected edge cover time in this case, and for

all trees, is the same as the vertex cover time. Here we wish to compute

the expected directed edge cover time for this walk. After a little thought it

becomes apparent that prior to completing a directed edge cover a walk will

first complete a vertex cover of the path, and that the vertex cover portion

of the walk will end upon its first visit to vertex n. From that point the walk

must continue until it traverses the directed edge closest to vertex 1 which

was not traversed during the vertex cover portion of the walk. The expected

vertex cover time for such a walk is the same as the amount of time necessary

for a walk started at vertex 1 to first arrive at vertex n, i.e. the hitting time

from 1 to n. As was mentioned in Chapter 1, E1H, = (n - 1)2. It remains

then to determine the additional number of steps needed to complete the

edge cover. As we contemplated how to go about doing this many questions

arose. How many edges, on average, were left uncovered during the vertex
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cover walk? How far back onto the path was the first missed edge? On

average how far back should we expect to go? We answer these questions by

first computing the probability, for each edge (k, k - 1), that it is the edge

closest to vertex 1 not traversed during the vertex cover portion of the walk.

Then for each edge we will multiply this probability by the hitting time from

vertex n to vertex k - 1. Finally, adding these quantities yields the expected

number of additional steps to complete the edge cover. Once we have this

description we will prove that the expected additional number of steps taken

after the vertex cover is completed is bounded by a term of lower order than

the vertex cover time. Specifically we will establish the following:

Theorem 3.1 The expected number of steps needed to ensure a simple ran-

dom walk started at an endpoint of P has traversed each edge in the path in

both directions is

(1 + o(1))n2 .

Indeed, we will actually show that after completing a vertex cover, the

expected number of additional steps needed to complete an edge cover is

O(n2/ log n).
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3.2 The Probability Distribution

For each integer k, 2 < k < n, we wish to compute P(Xk), the probability

that k is the least integer such that edge (k, k - 1) was not traversed during

the vertex cover portion of the random walk. We will do this by relating the

probability distribution for P to the probability distribution of Pn-I.

Lemma 3.2 For 2 <k < n- 1,

n) n- k n- PX 1),

P(Xk) ( -k ) P (X -  (3.1)

and
n-I

P(, = -- +lP(Xk (3.2)

k=2

The proof of this lemma, and others to follow, will make frequent use of

the following easily established result.

Proposition 3.3 Given a random walk on Pn, started at vertex j, the prob-

ability that the walk reaches vertex 1 prior to vertex n is

n-j

Proof

Let rj be the probability that starting at vertex j the walk reaches vertex 1

prior to vertex n. Then r, 1, r, = 0 and

--( ) rj- + ( )
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The solution to this recurrence relation is (n - j)/(n - 1), as claimed. *

Proof of Lemma 3.2

Consider a random walk started at vertex 1 on P. Upon first visiting

vertex n - 1 this walk completes a vertex cover walk for P-. Thus the

probability distribution of untraversed edges at this point is P(Xkn- 1 ), 2 <

k < n - 1. With probability (n - k)/(n - k + 1) the walk will reach vertex

n prior to returning to vertex k - 1. In this case, if k is the least integer

such that edge (k, k - 1) was not traversed in the walk prior to reaching

vertex n - 1, then it remains so when vertex n is reached. All of these walks

then contribute to P(Xkn). This means that for 2 < k < n - 1,

P(Xk)- ( k +) P(Xk - ) '

This leaves only those walks that, upon first reaching vertex n - 1, step

back to vertex k - 1 prior to their first visit to vertex n. The probability

that this occurs is 1/(n - k + 1). Each of these walks has the property

that edge (n, n - 1) is the only edge not traversed when the walk first visits

vertex n. This gives us

n- 1P(Xn) . E
k=2 - k+1
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Clearly P(Xk) = 0 for n < k. We may use this fact to reduce P(Xkn) to

a multiple of P(Xf). Iterating (3.1) yields

j=k+l J- k+ 1 ) n- k+lI

Using this fact, (3.2) becomes

P(Xnn) k).
k=2 n-k+l

Define the sequence {ff} by fn- = P(Xn). Then by equation(3.3)

P(Xn) = n- ) fk-1. (3.4)

But the values of P(Xn), for 2 < k < n, represent a probability distribution

on the edges of P, so

P(Xn) = 1.
k=2

This leads to one of the many interesting identities satisfied by the sequence

{f,}, namely n-1
n ( )fj 1 

(3.5)

This sequence will play a central role in some of the arguments which follow,

and we will rely on this identity throughout.

Remark: For future use we will define fo = 0. A more detailed study of

the properties of the sequence {f } is contained in Appendix A.
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It is worth noting our interpretation of the elements of the sequence {f,}.

When the walk first visits vertex k the probability that it reaches vertex n

prior to returning to vertex k - 1 is 1/(n - k + 1). Thus looking back to

equation(3.4) we see that fk-1 represents the conditional probability that,

given that the edge (k, k - 1) was not traversed prior to the walk reaching

vertex n, it is the closest such edge to vertex 1.

Remark: Clearly upon first completing a vertex cover of the path the

walk has failed to traverse at least one edge, namely (n, n - 1). Based on the

observations above we know that the epected number of edges which were

not traversed during the vertex cover portion of the walk is

E 1 - hn-1.

k 2 n _ k + 1

Remark: We may also now determine on average how far back onto the

path we must go to complete the edge cover.

n -

k=2 n k+=1

In Appendix A we prove that fn - (1/ha), and by combining a lower

bound on fn with techniques similar to those used in Lemma 3.4 prove

that (3.6) is O(n/logn). If one could establish this bound on (3.6) directly

then Lemma 3.4 would be an immediate consequence.
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3.3 Computing the Expected Directed Edge

Cover Time

Given the probability distribution discussed in Section 3.2 we can now bound

the expected directed edge cover time for P,. Using the hitting time result

of Section 1.2 we find that the hitting time from vertex n to vertex k - 1 in

P is (n - k + 1)2. If we let EICe denote the expected directed edge cover

time for a random walk started at vertex 1 on P, then

EjCe = (n - 1)2 + 1: (n- k+ 1)2P(Xkn).

k=2

Combining this with equation(3.3) yields

n

EjCe = (n-l1)2 + E (n - k+l)P(Xk)

k=2
n-1

= (n- 1)2 + E (n- k)fk. (3.7)
k=1

So to prove that the expected directed edge cover time is (1 + o(1))n 2 we
n-1

need only show that E (n - k)fk is o(n 2).
k=1

In order to bound this expected number of additional steps needed after

the vertex cover is complete we will use the theory of generating functions.

Let the sequence {g,} be defined by

n-1

gn- E (ni - k)fk. (3.8)
k=1
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Lemma 3.4 Given g, as in equation(3.8), then gn-i 0 (log_)

Proof

The ordinary generating function for the sequence {fi}, F(x), may be

found from the identity in equation(3.5). If

F(x) = fkxk,
k>O

then from (3.5) we have that

F(x) In ) x

or

F(x) - -x 2

(1 - x)ln(1 - x)'

Let

G(x) - gnx.
n>1

Then using definition(3.8) we have

1 x -x x
G~)=F(x) - B(-x), (3.9)

(1 - x) 2 - (1 -X) 3ln(1 - x) (1 - X)3

where B(x) = bkxk is the ordinary generating function for the Bernoulli
k>O

numbers of the second kind, {b,}, defined and studied by Jordan[17]. 1 The

1D. Fielder[15] communicated our interest in this generating function to P. Bruckman[8]

who pointed out its relation to similar functions in Howard[16], which in turn led us to

the work of Jordan.
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elements of the sequence {b,,} are coefficients in the Bernoulli Polynomials

of the 2"d kind given by

n-(X1 Jx d.n bk x
f (n- 1) k=0 )

Equation(3.9) may be written as

G(x) (1x)3 (E (-1)kbkxk),

which makes it clear that

[x'3]G(x) 1 I (-1)n-j-lb _j, 1 . (3.10)
j=O

It also follows immediately from (3.9) that

which shows that

fn+l- f. = (-1)rb,,. (3.11)

Since A'Fn(x) = 'J-l(x), where A is the difference operator, it follows

that the coefficient bi in 'J'n(x) is independent of n, and it is easily seen that
1I

J ( ='dt P 4n+1(1) - +1(0) :bn. (3.12)

Combining this with (3. 11) and () (1)+ (t-1) leads to

0
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It also follows from the integral representation of b,, in (3.12) that (3.10) can

be written as

1 n-1E ( i ( )(-I) --I (n-_;_l) d
j=o 0
1 n-1 - - 3 j 1j=0 , '( -'(_j_,)dt. (3.14)

By considering the coefficient of xn in (1 - x)t we see that

n - (_ l )n - j - -+7ji t ( t 3 ) .

j=o Jn J /-

So equation(3.14) becomes 1 -
9 f t (1 n 1 t3)dt. (3.15)

0

In order to obtain an upper bound for 9,,-i note that
1

gn-( I (- 1)-2 )dt

c (13-( w (31) f

( ) 2) (t - (n - 1))(t - n)dt

0

I .. nt 2 ) (t2-(2n6 -)t+n(n-1))dt" (3.16)

Using the fact that (1 - x) < e- x , we can bound (3.16) from above by
I

(1) D t( 31+ 4+-.+n l2)(t2 _ (2n _1 )t + n(n _ - l))dt.

20
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Then if we let s = h,,-2 - ' we have

0

Integration by parts in inequality(3.17) leads to

g,, < n 2 ( I- 1 )

gn-, -- () - ) ( -e(ho_)) + o(1).

Hence

fin-i (+nn 2 2 ~ 0(1) 0(2-- I n(n - 2) - 3) (Inn1 -- .,

Proof of Theorem 3.1

The proof of Theorem 3.1 is immediate when one combines equations(3.7)

and (3.8) with the result of Lemma 3.4. N

Remark: In Appendix A we show that g,-i = Q(n 2/ log n). So the

expected additional number of steps needed to complete a vertex cover walk

to an edge cover walk is actually O(n2/ log n).

3.4 Starting from an Arbitrary Point

In Sections 3.1-3.3 we described how one could compute the edge cover time of

a simple random walk on P, started at vertex 1, using coefficients we chose to

label f,,. We have that after completing a vertex cover the expected number
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of additional steps needed to ensure an edge cover is O(n2/ log n). However,

the definition of edge cover time is the maximum of the edge cover times

calculated for all possible starting points. As was mentioned in Section 1.2,

the vertex cover time for a path is maximized for walks started from the

center. This was easily seen by maximizing the solution to the recurrence

formula mentioned there. It has been conjectured, although still not proven,

that the vertex cover time for all trees is maximized by a random walk on the

path started at the center. Unfortunately, there does not appear be such a

simple description of the edge cover time for a walk on the path. Nonetheless,

we have been able to establish a tight bound on the edge cover time for walks

started at an endpoint. Now we wish to generalize that result to the case in

which we start the walk from an arbitrary vertex 1 < j < (n + 1)/2. With

this information we will answer some of the questions posed above for the

edge cover case. Note that due to the symmetry in the path we need not

concern ourselves with walks started beyond the center/centers of the graph.

We will prove that for n > 9 the expected edge cover time on P is a

strictly increasing function of the starting point, j, for 2 < j < (n + 1)/2.

Combining this with easily computed results for paths on nine or less vertices

we will then be able to deduce that the expected edge cover time on a path

is maximized in walks started from the center/centers when n > 8 and from
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the endpoint for n < 8. Moreover we will be able to prove that the additional

number of steps needed to complete an edge cover for a walk started at the

center/centers of a path is O(n 2/logn). An interesting fact that we will

establish along the way is that the edge cover time for a walk started at an

endpoint on Pn, n > 3, always exceeds that of a walk started at its point of

attachment, thus this time is not then minimized by starting at an endpoint.

It turns out that this is the case in all graphs, for all leaves, which we will

prove in Chapter 4.

Recall that when considering a walk started at vertex 1, our strategy

was first to make use of the expected vertex cover time which was nothing

more than the hitting time from vertex 1 to vertex n. We then computed

for each k, 2 < k < n, the probability that k was the least integer such that

edge (k, k - 1) was not traversed during the vertex cover portion of the walk.

Multiplying the probability for each k by the hitting time from n to k- 1 and

adding the results together then gave us the expected number of additional

steps necessary to complete an edge cover walk.

Now we need the vertex cover time from an arbitrary starting point.

Proposition 3.5 On the path, P, labeled in the natural way, the vertex

cover time for a random walk started at vertex j is

EjCV= 5(n- 1)2 - (n- 2j + 1)2. (3.18)

44
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As was mentioned in Section 1.2, the proof of this result is similar to

the recursive proof that the hitting time from one endpoint to the other is

(n- 1)2.

Unfortunately no such simple recursive argument appears to be available

for the computation of the expected edge cover time. In order to use our

previously successful method we must condition the probability distribution

on the last endpoint visited during the vertex cover portion of the walk.

Once we have found such a conditional probability distribution we can again

multiply the probability for each edge by the hitting time from the given

endpoint to the far end of that edge. Summing these products will then give

us the expected number of additional steps needed.

We will use the following notation.

Xk - the event that k is the least integer such that a random

walk on Pn, started at j, upon completing a vertex cover,

has not traversed edge (k, k - 1).

Yk - the event that k is the greatest integer such that a random

walk on Pn, started at j, upon completing a vertex cover,

has not traversed edge (k, k + 1).
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AI- the event that a random walk started at j completes a

vertex cover at n, i.e. visits vertex 1 prior to n.

A - ' -the event that a random walk started at j completes a

vertex cover at 1, i.e. visits vertex n prior to 1.

The following statements are immediate.

P(YI A1- n) A0 Vk

P(Xjk IA--) = 0 Vk
P(X kAI+' 0 1<k<j" (X j-n,k A__ I < k _

P(Y,k Aj--A ) = 0 j < k < n-1.

Then we must determine

P(Xk IA n) j + I < k < n

P(n jA-
1 ) 1 j1PY,k - 1 < k < j-1

Noting the symmetry of a random walk on P, we have

p(zk I An i n Azj)l- " (3.19)

Thus it will suffice to obtain a characterization of P(Xnk I A-n).
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Lemma 3.6 For a random walk on P, n > 3, any starting vertex j, and k

satisfying j + 1 < k < n - 1, we have

.7n-2 (n j (n-k+1) 3 ~ A

and for k = n

P(X7n I An) j- +
3,n 3 j(n- 2)(n- j) +

(n-21 _n-1 k-=j+1 1n - ± P(X- IA

Proof

We are now concentrating on random walks on P. that start at j and com-

plete a vertex cover upon first stepping to vertex n. Notice that all of these

walks complete a vertex cover of P- 1 before yielding a vertex cover of P. We

will use this fact to relate the probability distribution of P(Xjn- I  1 ,

j + 1 <k <n - 1, to that of P(Xjkn A , jn) 1<k .

Upon first arriving at n the walk has covered all vertices in Pn and the

last new vertex visited prior to n must have been either 1 or n - 1. We will

compute the probability distribution of P(X,k JAI-'J), j + 1 < k < n, by

considering these two subcases separately.

Case(l): Suppose the last new vertex visited prior to n was n - 1. Then we

need to compute the probability that this walk visited 1 prior to n - 1, given
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that it visits 1 prior to n. Using elementary probability we have

p(A __, _ l ,, =P(A --' n A AI - 'n

pA11--I "'

However, P(Aj ' n I Aj ] = 1, so for 1 < j < n - 1,

p(A A)p(A1-+, I [A} ,) _ p(A I__,)

- n-2 _ (n-jl )(nl (3.20)
(tj) Xn- 2}n-j}

All of these walks that visit 1 prior to n - l(and prior to n) begin as

vertex cover walks, started at j, for Pn-1 . So P(Xjn-'I Ij-n-) is well

defined in these cases. Using Proposition 3.3 we know that upon first reaching

vertex n- I the fraction (n- k)/(n- k+ 1) of them will reach vertex n before

returning to vertex k - 1. Thus we have for j + 1 < k < n - 1,
P xn 1- n  Al n-l) (n-k)P 'n-l Iln-' 3.21

P(Xk I A n__j ( k + 1 P(Xj,; I A (3.21)

The quantity P(X)k I A) for j + 1 <k < n - 1, can now be obtained

by making use of
r(X},kn)I Ajl-n n A_ 1 '-' l n --- P(n, '7_j I - 1 j

p(xk 1 n A l -1 ) + P(XikA. n A-

P(Xpk I P(A --,)

Note that P(Xk N A -  A -1 ) = 0, for j + 1 < k < n - 1, from which

it follows that
Aj. ) (Xj'k nA1- n A'-n-"

P(Xk I A1- -(J 1--n
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P(Xik n A -n n A -n- 1 ) P(A 1- n n j

P(ml  n A P(Aj )

P xn1 ---1n-1 1-n-1 - n

k P(XkA Aj

Combining this with (3.20) and (3.21) yields for j + 1 < k < n - 1

P Xn 1-n ) = n - j -1) (n - 1) ( n - k p x l _ "\ , -- A -n-'.

PX,k I A n-2 n-3 n-k+l)PXjk A

Within Case (1) this leaves only those walks which reach vertex k - 1

before vertex n. The probability that this occurs, given that the walk visited

1 prior to n - 1, is 1/(n - k + 1). These will contribute to P(Xjn 7 A1-n).

Case (2): Suppose the last new vertex visited prior to n was 1. In this case

the walk visited n - 1, 1, and n, in that order, so we have

P(An- 1 - l A1-n)P An 1- --- 1 n') __ -n) 3

P(Al_)n-1

(n-j
n-1

= (n - 2) (n - )"3. )

Notice that the only edge which these walks have not traversed upon reaching

n is (n, n - 1). Thus all of these walks belong to the class of walks that
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complete a vertex cover at n and have k = n as the least integer such that

edge (k, k - 1) has not been traversed.

Combining this fraction with the walks described in the latter part of

Case (1) results in

P(X, I AP(A- '-1 -' I Aj) ±
n1p (x[ j  ,n j- -

k=j+ln-k+ I n-2 "

Using equation(3.22) we have

P(Xn I A ' - )

j-1

(n-2)(n-j)
(n -j- I n-n-1 P(j"-I 1n ).

n -'2 n E - p,-1 +-n I1
-~~ k=j+l n- l

3.5 Relation between P(X4"k I Ark) and {fn}

Lemma(3.6) provides us with recursive formulas for the probabilities we need

in terms of the probability distribution on a path containing 1 less vertex.

This is not very useful in practice. Notice that if we set j = 1 we have exactly

the recurrence that we found in our analysis of walks started from vertex 1.
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This suggests that we may be able to reduce our recursive expression to a

more tractable form. Rearranging and iterating we have for j + 1 < k < n-1,

P(X,k I A-)A n k) = X j -1 1 A 1 n l

n- kn-1 ( n- ) (n- j-2)k

-nn- 3 (
n1...kn-1-k,

n-1 1 1)(.. __ )p(xjk I Ai_,k

( n- n - k + I k - k AI

n-k+1 (j, k I A P(Ajk). (3.23)

P(Xjk I AJ- n) = 0 for n < k so this is as far as we may reduce. Also,

since the P(Xjnk Ajl),for j + 1 < k < n, represent a probability distribu-

tion we have

P(Xn I A")

n-i
S- S P(Xjk IA")

k=j-t-

-n--I P ( (xkk .- k 1-k.

- 1- ( kn- ) k A )P(Aj ).(3.24)
( 1)k=j+ln

These results have reduced the amount of information we need in order

to use the stated probabilities to determine the expected edge cover time

starting from j. Our next step is to find a description of P(Xkk rl in

terms of quantities we already know.
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In Section 3.3 we provided a tight bound on the expected number of ad-

ditional steps needed to complete an edge cover having already accomplished

a vertex cover starting from an endpoint. Our bound relied on a connection

between the probability that a particular edge was the first missed during

the vertex cover walk and our coefficients f,,. It seems that there should be

some connection between the edge probabilities we have calculated for the

more general case and the f1 .

Remember that

i n-j1

Combining this with equation(3.24) leads to the equation

PXn Aj )P(Aj ) (
n -1 A )P (A k

k=j+l 
n --

,+ 
1

or

nPjXPk I Al -k) p(m1-k). (3.25)
k=j-t-

When j =- 1 this is the recurrence which helped define the coefficients fn in

equation(3.5).

Lemma 3.7 For fixed k,

k-i k j r+l

P(X,k I A k)p(A 1-k= (f f (3.26)
r=l
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Proof

We will prove the lemma by showing that, for fixed k, the two sequences

dependent on j are the same for j = 1 and satisfy the same defining recur-

rence relation, given in equation(3.25).

Consider the case when j = 1. Then

p(X1k I Alk)P(Alk) k) fk-1

where the first equality is due to the fact that P(A -k) = 1, and the second

comes from the definition of fk-1. But, remembering that fo is defined to

be 0,

(f - f-) -1.

So the claim is true when j = 1.

Putting s k - j we have

n ( k -  (k-jr +1I

E Efl-f_

k=j+l n-k+1 k -f- l -r

r~r l

n- s-js r+j I

= - n nj-r +1 (f- -). (3.27)
rUs T- --- 1 ( lr -s + 1

Forr > 1

S (fsfs._)( 1±1 1
Sr1
E~ r - s+ I =T + S

s r - ) -
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and relying on the definition of {f,,}, we know since fo 0

f1 r- x(i1: r - (s-l) =1: f  ( =i'.

So for r > 1 the inner sum in (3.27) is identically 0 leaving only the term

r = 1 which is (n - j)/(n - 1). ,

3.6 Analysis of the Edge Cover Time for an

Arbitrary Start Vertex

We now have the probability that a particular edge is the last edge traversed

in an edge cover walk on P, started at vertex j expressed strictly in terms of

weighted sums of coefficients we discovered in our discussion of such a walk

started at vertex 1. Our next task is to use this information to prove that

the expected edge cover time on a path started at vertex j is an increasing

function of j for 2 < j _< (n + 1)/2. Once we have shown this, then by

the symmetry of P, we will have that the expected edge cover time for

P, is maximized when a walk is started at the center, or when n is even,

centers, of the path. While studying this question we combined the ability

of Mathematica to do exact rational number arithmetic, and the probability

distribution defined in Lemma 3.7 based on weighted sums of the f,, to

confirm computationally that the expected edge cover time on P, started
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Start Vertex
n 1 2 3 4 5 25 50 75
2 2
3 6.5 6
4 13.42 12.75
5 22.71 21.96 22
6 34.35 33.55 33.76
7 48.32 47.49 47.92 48.16
8 64.60 63.75 64.43 64.97
9 83.19 82.32 83.25 84.14 84.48
10 104.08 103.19 104.37 105.63 106.36
49 2668.67 2667.69 2677.66 2692.03 2708.61 2939.39
149 24507.3 24506.3 24534.5 24576.1 24626 25977 27297 27763

Table 3.1: Values of Edge Cover Time

at vertex j, is an increasing function of j for 2 < j _ (n + 1)/2 when

5 < n < 150. A sample of the actual predicted edge cover times is contained

in Table 3.1.

Let EjCe be the expected edge cover time for a walk on P,, started at

vertex j. Then EjCe may be computed by finding the expected vertex cover

time for a walk started at j, E.C", and then computing the expected number

of additional steps the walk will need to return from the last point of the

vertex cover to the edge closest to the starting point which was not traversed

during the vertex cover portion of the walk. In the notation previously
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introduced this is then

n

EjC-= EiC" + S (n-k+ 1)2 P(Xjk IA-n)P(Al-n)
k=j+ l

j-1
+2 () 2 P ))P (An- 1 ).+ ( j P A A.

k=1

Using equation(3.19) this becomes
n

EC'= EjC + (n - k + 1)2 P(Xjk I A l"n)P(A -)
k=j+l

j- 1
)2 n A1- n " ( 1-- n "

(k) 2 P(Xj+l , _k+l I A- 1) P (A'-+, 1).
k=1

Combining this with equations(3.23) and (3.24), and making use of

E j C =  ( 5 (n - 1 ) 2 -  j ( n +__ 11 ) ) 2

and

leads to

+(n - k + 1) P(Xik I Ak)P(Aj)
k=j.-l-

j-1
- - E " 1( n-kl 1l'-n-k+l' p{ 1-n-k+l'

± (k) P(Xn-jln-k+l ) n-j+l P(A n-j+l
k=1

Now using Lemma 3.7 we have

E3C (5 (n_- 1)2_ (j _n+ )2 +
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n[ k- k j r ]
+ E (n-k+l) - (f-l--fr)( k--r+

k=j+l

+ 5 (k) - (fr-,-fr) . (3.28)k=1 r=1 r+1

In Chapter 4 we will show that in all graphs the expected edge cover

time for a random walk started from a leaf exceeds the expected edge cover

time for a walk started from its point of attachment by exactly 1 minus the

probability that the last new edge visited in a random walk started from

that leaf is the edge from its point of attachment to itself. Based on our

interpretation of the coefficients f,, we know that for a random walk on

P, started at vertex 1 the probability we complete an edge cover on edge

(2, 1) is exactly 1/(n - 1). Thus a random walk started at vertex 2 will have

expected edge cover time (n - 2)/(n - 1) steps less than a walk started at 1.

This differs from the vertex cover case where the expected vertex cover on

P, considered as a function of the starting vertex j, is a strictly increasing

function of j for 1 < j < (n + 1)/2. The exact difference in the expected edge

cover times starting from vertices 1 and 2 is confirmed by a direct calculation

of equation(3.28) with j = 1 and j = 2. It is also worth noting that using

the analysis to follow, the expected edge cover time for a random walk on P

started at vertex 3 exceeds that for a walk started at vertex 2 when n > 5,

however, it does not exceed that for a walk started at vertex 1 until n > 9.
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Theorem 3.8 On the path Pn, EjC' is a strictly increasing function for

2 < j K ++ and n > 5.

Proof

In order to prove the theorem it suffices to show that Ej+ICe - EjCe >

0 for 2 < j < (n - 1)/2. Also since we have established that the theorem is

true computationally for n < 150 we will only need to show this for n > 150.

We will do so by studying the form of this difference in light of our knowledge

of the sequence f,. We will derive a sequence of inequalities each of whose

proof would ensure our result.

Using equation(3.28), and after a good deal of algebra, one obtains

Ej+iC- EjCe = (n- 2j)-(nj) + (ij)

+ E3 (n-k+1)[E (fl--f)( )
k=j+2

-E k l(fr-1- fr) ( - -1 ] (3.29)
+k-n ( k- r ±1I

Reversing the order of summation and reindexing the first of the two

sums above yields

Ej+,C' - EjC' = (n - 2j) - (nj)+ (njj
E 3 + 1 C1 j-E3 C

+ k (f-1- fr)

k=1 L r=1 (n-k-r+1
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j-1 rj-k+1 -
k= L r=f n- k-r+1

It is now easy to see that combining the like terms in the two summations

results in

Ej+1CC -EjCe =- (n 2 j)-( n j)+(njj)

j-1 [--k+1

+ E k (f-i - f'.) (k=1 rT=j-k+2 n-
n-j-i [n-k+1

+~ k -r=l Y,1 n- k-r+1I

Focusing on the first of the two sums above and using the fact that the

fn are a decreasing sequence for n > 1, it is apparent that

j-1 .- k+l 1

k [ (fr-> .fr)(>.
k=1 7.=j-k+2 n k - + I

So to prove that Ej+1 C - EiC' > 0 it suffices to show that

n-j- n--j l (fr-

>_ k (-- ) ( .+ (3.30)k=i r r=1 - - 1

Using identity(3.5) we obtain

n-j-k+l ( 1 n-k (( 1 )
E (fl-i-/ ) (n r -1 E U7, -I- f7.) (nk r+1

r=1 r=n-j-k+2

Applying this to the right side of inequality(3.30) yields

n-j-1 n-k 1 1 \
E (k) E (fr---fr) k+ I
k=j r=n-j-k+2
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n-ij- j-1

- E (k)>3 - (f,-k-i - f,-k-i+l) (3.31)
k=j i=1

It should be noted that in this form each of the inner sums have exactly

j - 1 terms and that there are a total of n - 2j terms in the outer sum.

Reversing the order of summation leads to a good deal of cancellation and

so (3.31) becomes:

j-i 1 - -

j f,-j-i+i + E E (fk-i+l)
i=1 i=1k=j+l

+ (n -j-1)> fj-i+l.

Using identity(3.5) the third term in this expression for (3.31) can be written

as

(n-j -1)E fj-i+i =(n - j-1) 1-
i=1

Subtracting this term from both sides of (3.30) and multiplying the resulting

inequality by -1 yields

Sj-1 1j-1 n-j-1

+ n < j ( f.-j-i+i + E E (fk-i+l). (3.32)
j n - -=1l =j+l

Let E denote the first term on the right side of inequality(3.32) and F

the second term. Then in order to prove that Ej+IC' - EjC' > 0 it suffices

to prove
1 n

F > j + . E. (3.33)
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Once again using identity(3.5) we have

E=j 1-E n -j- k+l fI ) •A
k=1

Note that fi = 1 so
n-2j+l 1 k

E~j- ni ( n-j- k+lE j n- k=2 k

and (3.33) may be rewritten as

n-2j3+l

F>--I+j f - k 'k. (3.34)- k=2 n -j k+ lI

In order to prove that this inequality holds we now consider the following

two cases:

Case (1): j < ,1 Case (2): 2 < j < n

Case 1
Studying the right side of inequality(3.34) and remembering that fT  2 )

Vr > 2 it is easy to see that

1-2.j+1

n (-j k±l)fk< fk< n -.

Thus for Case 1 it suffices to show that

1 n n n -F >- -l1+ - _j, when -< j< - (3.35)
2 4- - 2
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j-1 n-j-1

Changing the order of summation in F E j (1) E (fk-i+i) yields
i=1 0)k=j+l

F = E E ( .)(fk-i+l).

k=j+l i=1

Remembering that h,, denotes the nt" harmonic number, we note that

j-1 1

E (k-i+l) - hj-lfj+l when k = j + 1,

-) (fk-i+l) hj-lfj+2  when k = j + 2,

j-1 1

E (I) (fk-i+l) > hj-lfn-j-1 when k =n-j- 1.
i=1

Summing these inequalities yields

F > hj-l(n - 2j - 1)fnj_1.

In Appendix A we show that for r > 3, > ( ) (j1l. So for >150 and

n-1 j _y' it is certainly true that f,-j-1 > () 1 ,which implies

F> (3) (,hj-) (n - 2j - 1). (3.36)4 > 3 hnj-l)

A simple application of the Cauchy-Schwartz inequality to hj- 1 and h-j-1

shows that

hj- >1- hnj_1 - hi_

.n-y-1 hi- 1
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But h, 1-j-1 - hi-1 < ln4 when 2 < j 5 n-1 and n > 150, leading to the

conclusion that

F . 4 1 j-

If we let j a, where 1 < a < n, inequality(3.37) becomes

If e ltj~-awhee \ fin4

F > (3) (I n) (2a -1). (3.38)4 hj-,l

and we have

1+(2 -) l +a.

Thus to prove inequality(3.35) it suffices to show that

(3)( 1 ln4 (a - 1 4 1 n _<n (339)

4 for 2  a- 2 -4

Forn>150andjn4, " <!.So

(3)1 _ln 4' (2a - 1) > a -21

) hj- 21 )

and for n > 150
1 4

a- ->a-+-.
2 n

This then implies inequality(3.39) which was sufficient to prove that

n n-1
Ej+Ce- EjCe > 0 for n -< J

4 2

Case 2
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Now we wish to show the result for 2 < j < 2. Simple manipulation of our

general description of expected edge cover time in equation(3.28) with j 2

and j = 3 shows that for n > 5, E3C > E 2C. So we really only need to

prove Ej+C6 - EjC > 0 for j > 3. Once again referring to inequality(3.34),

note that applying identity(3.5) (and reindexing) we have

n-2j+l (n~j1k+l) ( -j)f -1 ( )
F_- fk h 1-f-j f, -j+l-k

1
<

n-a

Thus to establish inequality(3.34) it suffices to show that

-j n-j"

From inequality(3.36) we have that

(3) (hhi-) (n-2j-1),

so it suffices to prove that

(3) ( hj-, (_2~) 1+ j
4 hn-j- I )-n j - 1+ n- j

or even

3) hj-1 2 j 1) j. (3.40)

Let j = a(n - 1) with - -< a <1 (these bounds are appropriate since

here in case (2) j < n). Then referring to inequality(3.40) and remembering

49



that h, > Inn, Vn > 1, we want

(-3 !n[a(n- 1) - 1]
(3 h(l-a)(n-l) 11(1 2a)(n-1)>a(n-1).

Canceling n - 1 from both sides we need

(3) ln[a(n - 1) 2,--a
43 h(l-,,)(n-l ) 1] (1 2 ) O.

But hk < ln(k) + 1 for k > 1 so it suffices to show that

(3) ( ln[a(n -1)-l1] (1-2)>a

4 ln [(1- a)(n -1)]+i(-1_a

or equivalently

(3)(1- 2a) ln[a(n -1)-]- a(ln[(1 - a)(n -1)] + 1)> 0 (3.41)

When n > 150 and a n-i or a the inequality is valid proving that

the expression on the left-hand-side of (3.41) is positive at the endpoints

of the interval in question. Using basic calculus one finds that the second

derivative of this expression, taken with respect to a, is negative throughout

the interval, and thus the expression must be positive throughout the interval.

By our chain of sufficient inequalities we then have

Ej+ICe - ECe > 0 for 2 < 3 < n.

Cases (1) and (2) in combination show that for n > 150, EjC' is a strictly

increasing function of j for 2 < j < .+1
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Combining the fact that E3 Ce > EIC' for n > 9 with our computation of

the expected edge cover time for small n we have as an immediate corollary

that it is maximized by starting at the endpoint for walks on P when n < 8,

and maximized by starting at the center/centers for all longer paths.

3.7 The Additional Number of Steps Needed

When Starting From the Center

Equation(3.28) provides a formula to compute the expected edge cover time

starting from any point on the path using the vertex cover time and weighted

sums of our coefficients f,. In Section 3.3 we proved, for a random walk

started at an endpoint that the additional number of steps needed to assure

an edge cover, after the vertex cover walk was completed, was O(n2/ log n).

We can prove that this quantity provides an upper bound for walks started

from the center/centers.

Theorem 3.9 For a random walk started at the center/centers of P, the

expected additional number of steps which are needed to complete an edge

cover after all vertices have been visited at least once is O(n 2/ log n).

Proof
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We will first prove that the theorem is true for n odd. We will then use

that fact to make the argument for even n. The quantity in which we are

interested is EjC - EjCv when j = (n + 1)/2. This consists of the latter two

sums in equation(3.28).

EjC - EJCv E (n-k+1) -E (f- f - ) kr -)
k=j+l r=l

+ 1 k - E(f-,-i) kr+ (3.42)
k=1 r=1 f--+

Reindexing the first summation we have

E (n - k-+1)- E(f,-l - f) !- -~

k=j+l I r1l k - r

- kF- S (fI - M( 3')--j-r - k+2 .(3.43)E~ E ~ n - r -k + I
k=1 r=1

We are interested in the quantity when j = (n + 1)/2, which implies

n-j=j- 1 = (n- 1)/2. So in this case

n-i ___-

EjCe- EjCv = 2 E k (fI-1 - fr) 2-- (3.44)

It is easier to analyze equation(3.44) if we break up the summation yielding

(n-1 i)r

EjeE V 2 (2 -k n -k-r+IEEC-EJCV (-k) fr-i ()

k=1 =1 n-k- r+ 1

2 (12 -

2( ",+ k r + 1 ) )
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This in turn may be broken up further into

n-i_2
(ElCe ECv 

r= 2 k)
n-1

1  n+l -

k2 2r ~ lkl

2

Now we use the fact that fo = 0 and reindex again to obtain

k'-l r=2 (n-k-r.

) - r

n-i n -1 -- 1-

-- 1 n~

k E fr

This then reduces to

EjCe - EjC v =2 f -k

S2 S fT(~ l2k - 2 r

2k

n - 1 Z- k

2

fr2n±12kfrk=0 k-l
n-i 1  - n--k

2 2

- (n-i) 2 2 (3)

n-l-- 1t --l r

r=o
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n-1

r=1
n-1

2-(n2- 1) S fr (h.r - h.) (346
r=1

Referring to Appendix A we know that

n-1

2 E f 21(n+1).

r2 1

So

EjCe - EjCv < 2g( ) : n

Now let n be even. Consider a random walk started at vertex n/2 - 1 on

P,, and another walk started at n/2 - 1 on P,,+i. It becomes clear that the

expected edge cover time of the latter must be at least as great as the former

when one considers the following modification. Modify P, by adding a loop

to vertex n. Now upon reaching vertex n let the walk have probability 1/2 of

stepping back to vertex n- I and probability 1/2 of stepping around the loop.

Compare a walk started at vertex n/2 - 1 on this modified path to that of the

walk on P. Each time we visit vertex n on P, we return to vertex n - 1(and

therefore back towards untraversed edges) with probability 1 taking 1 step

to do so. On the modified path we step back to vertex n - 1 only 1/2 of

the time and the other 1/2 of the time waste a step on the loop. It is clear
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that in the modified case the expected number of steps to traverse all the

directed edges from 1 to n must be at least as great as the expectation on

P. Thus it is clear that when one compares the edge cover walks on Pn and

Pn+l, as described above, that the expected edge cover time for the walk on

P must bound from below that of the walk on P+ 1 . But from our previous

results the edge cover time for a walk on Pn, is maximized by a walk started

at vertex n/2 - 1. Thus we have

If we denote by An the expected additional number of steps to complete the

edge cover after visiting all vertices on P then using (3.28)

An < (5)n +7 + An+l.A2 2

Since we have just proved that An+1 = O(n 2/logn) we now have An =

O(n 2/logn) as desired.
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CHAPTER IV

GENERAL RESULTS FOR EDGE
COVER TIME ON TREES

4.1 Minimum Edge Cover Time for a Tree

In Chapter 1 we mentioned a number of results that have been proven for the

vertex cover time for trees. Having extensively studied one tree-the path,

we now focus on other trees and show parallel results for edge cover time.

The main result of this chapter is the theorem below.

Theorem 4.1 For any n > 3, the star on n vertices, S,,, with starting vertex

at the center, has the minimum edge cover time among all trees on n vertices.

In order to prove the theorem we will first show that the minimum edge

cover time for any graph is attained by a walk started from some non-leaf

vertex. We will then prove that the edge cover time of a tree must be at

least 2 more steps than the minimum vertex cover time for that tree and

finally argue that the star is the only graph which achieves this minimum.
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Having proved this theorem we will also determine the probability that a

random walk on S,, completes a vertex cover in exactly k steps which leads to

two interesting identities involving the Stirling Numbers of the Second Kind.

We will note that the edge cover time for a walk on any tree is bounded

above by the sum of the vertex cover time and the maximum hitting time

in that tree. This will lead to a bound on the edge cover time of a balanced

k-ary tree of O(nlog 2n + n log n). Finally considering all we have established

regarding the edge cover time of random walks on trees we conjecture that

it is maximized by a walk started at the center/centers of a path.

While studying edge cover walks on the path we determined that the edge

cover time for a random walk on Pn, started at an endpoint, exceeded that

for a walk started at its point of attachment by exactly (n - 2)/(n - 1) steps.

It turns out this is true for the star as well. That is, the edge cover time for

a walk started from a leaf on S,, exceeds that of a walk started at the center

by (n - 2)/(n - 1) steps. This is the reverse of the situation for the vertex

cover in which the vertex cover time is less for walks started at a leaf than

for walks started at their points of attachment. These results led us to ask

the question: For any gTaph, G, can we characterize the edge cover time for

a walk started from a leaf of G in terms of the edge cover time for a walk

started at its point of attachment. The answer is yes.
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Lemma 4.2 Given a graph, G, with at least 3 vertices, a vertex, x, of G

with degree 1, and vertex, y, the neighbor of x in G, then

ExCe=

EyC- + 1 - Pr[walk started at x completes an edge cover on edge (y,x)].

Proof

Consider the set of all walks started at y and observed until they first

achieve an edge cover of G. This set may be partitioned into two classes based

on the last edge the walk traverses.

AY = walks started at y which complete an edge cover of G on

edge (x, y).

By = walks started at y which complete an edge cover of G on

an edge other than (x, y).

Likewise we may partition the set of all walks started at x and observed until

they first achieve an edge cover of G into two classes.
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AX = walks started at x which complete an edge cover of G on

edge (y, x).

Bx = walks started at x which complete an edge cover of G on

an edge other than (y, x).

Given an element of set Ay one may create a unique element of set Ax by

adding a step from x to y to the beginning of the walk and deleting the step

from x to y from the end of it. Similarly one may take an element of Ax

and create a unique element of Ay by the reverse process. Thus there is a

bijection between sets Ay and Ax so they must have the same cardinality, and

moreover, the operation described does not change the length of the walks

so the expected length of the walks in each set must be the same.

Now consider the walks in By and Bx. Each walk in By may be converted

to a walk in Bx by the addition at the beginning of the walk of a step

from x to y. One may reverse this process to convert any element of Bx into

an element of By. Thus these sets also have the same cardinality and the

expected length of the walks in By must be 1 step less than the expected

length of the walks in Bx.
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If we indicate the expected length of a walk in X by Lx, then putting

these observations together yield

EyC' = P(Ay)LA, + P(By)LB,

ECc = P(AX)LA + P(B)LB.

But P(A,) = P(Ay) > O,P(B ) z P(By) > O, LA = LAY and LB. = LB + 1

so

EXC' = EyC + P(By) = EYC' + 1- P(A-). 0

Thus from Lemma 4.2 we now know that the minimum expected time to

cover all the edges of a graph occurs from some non-leaf vertex. In particular,

since S,, has only one non-leaf vertex, it is easy to compute the minimum

edge cover time for it. An edge cover of the star for a walk started at the

center consists of one step to some leaf followed by a vertex cover, and then

one additional step to traverse the edge from the vertex at which the vertex

cover ended back to the center. Thus the minimum edge cover time on S" is

exactly EzCv + 2 where z is any leaf of S,,.

Proof of Theorem 4.1

Let G be any tree on n > 4 vertices, and suppose that y is a non-leaf

vertex of G which minimizes the edge cover time on G. Brightwell and

Winkler[7] point out that the vertex cover time from y exceeds the vertex
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cover time starting from some leaf in G by at least one step, with equality

only when G is S,,. This is true because a walk which completes a vertex

cover of G creates a spanning tree of G in the process. If such a walk is

started at a non-leaf vertex it must walk to some leaf and then trace out the

tree. The star is the only tree in which, starting from a non-leaf vertex, the

expected time to reach any leaf is exactly 1 step. Thus if G is any tree other

than Sn, EyC ' > EXC" + 1 for some leaf x. An edge cover in G started at y

will consist of a vertex cover and then at least 1 more step. Thus

EyCe >ECv + > ExC +2,

with equality on the right only when G is S,.

Brightwell and Winkler proved that the minimum vertex cover time for

any tree on n vertices occurs for a walk on S,, started from a leaf. Thus, if G

is not S, we have

EyCb >! E C + 2 > z s + 2,

where z is any leaf of S,,.

This leaves only the cases where n < 4. The only tree on 3 vertices is the

star. For n = 4 there are two trees: the path and the star. Using the results

of Chapter 3 the minimum edge cover time for P4 is found to be 12 3/4 steps

for a walk started at one of the centers, while the minimum on S4 is 11 steps

for walks started at the center. Thus the theorem is true Vn > 3. R
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Given the result in Lemma 4.2 it is now easy to determine the maximum

edge cover time for S,.

Corollary 4.3 The maximum edge cover time on S,, occurs for a random

walk started at a leaf and has value

2(n- 1)h2 +2+ ( l). (4.1)

From Lemma 4.2 we know that this maximum occurs from a leaf, say it

is labeled x, and that the edge cover time from a leaf exceeds that from the

center, say it is labeled y, by

1 - Pr[walk started at x completes an edge cover on edge (yx)].

Proposition 4.4 The probability that a random walk on S,,, started at a

leaf, x, completes a vertex cover without returning to x is (n)

Proof of Proposition 4.4

Consider the sequence of leaves visited by such a walk. Having started

at x the walk visits the center point and is then equally likely to step to

any of the n - 1 leaves. Now consider all random walks started from the

center. It is easy to see that the probability any such walk ends at vertex x

is 1/(n - 1). Thus of all walks started at x, 1/(n - 1) will fail to revisit x

prior to completing a vertex cover. E
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This result proves that the probability that a random walk on S" started

at a leaf, x, completes an edge cover on the edge from the center to x is

1/(n - 1). Thus we have the result in Corollary 4.3. M

4.2 Stirling Number Identities From Stars

There is a second argument proving Proposition 4.4 which, while more tech-

nical in nature, provides two interesting identities involving the Stirling Num-

bers of the Second Kind. First we will need to determine the probability that

a random walk started at a leaf of S, completes a vertex cover exactly on

step 2k, k an integer.

Lemma 4.5 Given a random walk on S,, started at some leaf, x, the proba-

bility that this random walk completes a vertex cover on step m = 2k is given

by

P(EC" = 2k) = (n- 2)!S(k,n- 2)
(n - 1)k (4.2)

where S(a, b) represents a Stirling number of the Second Kind.

Proof

Let m = 2k. Note that k must be at least n - 2. For this argument

consider the center vertex to be labeled y. The vertices visited by the random

walk form a sequence in which we may consider position 0 to be filled by our
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start vertex and every odd element will be filled by the character y. Suppose

the starting point is chosen with uniform probability from the leaves of S".

Then the walk will fill k + 1 slots in the sequence from an "alphabet" of

n - 1 characters. If the walk completes a vertex cover on step m it must have

visited all but one of the n - 1 leaves by step m - 2 = 2(k - 1). In order

to count the number of sequences that fulfill this requirement we may first

identify one of the leaves to be missed prior to step m. There are n - 1 ways

to do this. Then the number of ways to fill k slots in the sequence from an

alphabet of size n - 2, assuming all characters must appear at least once, is

(n - 2)!S(k, n - 2). The total number of ways to fill k slots from an alphabet

of n - 1 characters is (n - 1)k. The probability that on step m we reach the

remaining unvisited vertex is 1/(n - 1). Combining these results we have

that the probability that a random walk completes a vertex cover on step

m = 2k is

(n -1)(n -2)!S(k,n -2) (n- 2)!S(k,n- 2)
n-I(n - 1)k (n - 1)k

But, since the starting vertex was chosen with uniform probability this is

also the fraction of all walks starting at vertex x which complete a vertex

cover on step m.
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Since the random walk completes a vertex cover with probability 1 we

have
00 C 0= 2(n- 2)!S(kn- 2)
/ P[E~C=2k = ( 7 1 - 1.

k=-2 k=n-2 (n- 1) k

which leads immediately to the first of our two identities.'

Corollary 4.6

S (k, n) 1

k>0(n + 1)k- n!

This may be confirmed directly as follows:

1: P[E ,C 2k,]=

k=n-2

- (n- (k,n_2)

k=n-2 (n )

1 n-2 j=0
k=-2n ) (n - 1)k2o -)(-)k-

j=0 k- n-/ (

n- 1 (n-1)( + ) n-2j=o j+ (1)j n

n-1 n n n-

1Wilf points out that these identities may also be proven by appropriate substitutions

for x in the generating function Zk>O S(k, n)xk x/( - x)(- 2x) .- (1 - nx).
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- _' n--1 ) (n-1)-rn 2  (- I)n-2
E= r n - I \n-- 1

The last equation follows from the fact that S(n - 2, n - 1) = 0.

We may use similar reasoning to calculate what fraction of random walks

complete a vertex cover on step m and have not returned to the start vertex.

We may choose the vertex which will be visited on step m in n-2 ways. Since

slot 0 is assumed to be filled by the character x, and none of the remaining

slots may be filled by x, or the end vertex, we must fill k - I slots from an

"alphabet" of n - 3 characters using each character at least once. This can

be done in (n - 3)!S(k - 1, n - 3) ways. Thus the total number of strings

matching our requirements is

(n - 2)(n - 3)!S(k - 1, n- 3).

There are (n- 1)k-1 strings starting at x and ending at step ?n-2. The prob-

ability we step to the remaining unvisited vertex on step m is still 1/(n - 1).

So the probability that the random walk completes a vertex cover without

returning to the starting point is

(nIl ) (n- 2)(n- 3)!S(k- 1,n- 3) _ (n- 2)!S(k-1,n- 3)
n- I( - 1 1  I (n - 1)k

ERom our earlier argument we know that the probability a random walk

on the star completes a vertex cover without returning to the starting point
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is 1/(n - 1). Thus we obtain

(n- 2)!S(k- 1,n- 3) _1

k=S-2 (n(n1)k

which leads to the second identity.

Corollary 4.7

S(k,n- 2) _ 1
k>O nk+1k>0 nn!

This identity may be established directly by remembering that

S(x,y) = yS(x - 1,y) + S(x - 1,y- 1).

When applied to (4.2) we have

1 E (n- 2)!S(k,n- 2)

k=-2 (n- 1)
k

0 (n- 2)!
k2 (n-> [(n-2)S(k-l,n-2)+S(k-l,n-3)]

kn2(n-1)'
= (n-l)k~n  ) (n - 2)S(k - 1, n- 2)

k=n-2

00 (n- 2)! S(k - 1,n - 3).+ (n-l)!

k=n-2 ( ~

Thus

E (n- 2)! S(k- 1,n- 3)

k=n-2 (n -)k

(n) ( - 2)S(k - 1,n -2)
k=n-2n
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(n -2) 00 (n -2)!
n I- E I(_l)k-l S(k-1,n-2)k=2 -2 (n - )

n- (n2)! S(j, - 2)

n-2-

-n-2 (in- 1)

4.3 A Global Upper Bound for Trees

In Section 2.2 we established an upper bound on edge cover time of O(dB,).

In Chapter 3 we proved that while this bound would provide O(2n 2) on

P, in reality the edge cover time is bounded by (5/4)n2 + O(n 2/ log n). In

this section we establish an upper bound specific to trees which improves on

O(dB,) in many cases.

Inspiration for the following theorem comes from a frequently used prop-

erty of hitting time known as the Essential Edge Lemma. It makes com-

putation of the hitting time between two vertices connected by a unique

path relatively straightforward. The form below is due to Brightwell and

Winkler[7].

Lemma 4.8 Let vertices x and y be at distance k in a graph G, with a unique

path x = Vo, V1 ,... , vk = y between them. For each i, 0 < i < k, let Gi be the
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component of G - vi-1 - vj+l that contains the point vi; similarly Go will be

the component of G - v, containing x. Let mi be the number of edges in G.

Then the expected hitting time ExHy is equal to

k-1

k2 + 2 m (k- i).
i=O

Of course, in a tree all vertices are connected by a unique path. Thus

we wondered if this property could be exploited in computation of the edge

cover time as well.

Theorem 4.9 Given a tree, T,

C < C + HT. (4.3)

Proof

Let x be a vertex in T for which ExC' is maximized. Consider T to be

rooted at x. Consider the forest created when x is deleted from T and call

each of the subtrees of T in this forest a branch of T. Then an edge cover

walk on T must proceed from the starting point x and first accomplish a

vertex cover of T. While accomplishing this vertex cover the walk must visit

each of the leaves in each of the branches of T. The vertex cover walk is

completed at a leaf in some branch of T. At this point it is the case that the

walk has traversed every directed edge in all other branches of T. Thus the
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only directed edges which may not have been traversed are the "back" edges

on the unique path from the leaf at which the vertex cover was completed

to the root x. Thus the expected number of steps remaining to complete an

edge cover is no more than the hitting time from this leaf to x providing the

desired result. M

This result gives an immediate bound for the edge cover time of balanced

k-ary trees on n vertices. Zuckerman[26] proves that the vertex cover time

for such trees is 0(n log 2 n). Aldous[2] points out that using the Essential

Edge Lemma one may prove that the maximum hitting time in such trees is

O(nlogn).

Corollary 4.10 The edge cover time for a balanced k-ary tree on n vertices

is 0(n log 2 n).

Combining the results of Zuckerman and Aldous with Theorem 4.9 pro-

vides the proof of this corollary.

Thus we have another example of a tree in which the expected additional

number of steps needed, after completing a vertex cover, in order to assure

an edge cover is of lower order than the vertex cover time. Note however,

that applying this result to P, would not have provided the correct result

since the vertex cover time and the maximum hitting time on the path are

both O(n 2).
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When one considers Brightwell and Winkler's conjecture that vertex cover

time for trees is maximized on the path, in conjunction with Theorem 4.9,

Corollary 4.10 and what, we've established for the edge cover time on the

path, it seems reasonable to believe that edge cover time is maximized for

trees by a walk started from the center of a path. This is certainly one

question demanding further study.
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CHAPTER V

A TIGHT BOUND ON THE EDGE

COVER TIME OF THE CYCLE

5.1 Vertex Cover Time on C,

A cycle on n vertices, Q , is a connected, regular, simple graph in which each

vertex has degree 2. We briefly mentioned in Section 1.2 that the vertex cover

time for C is (n). One classic argument establishing this is a combination of

a coupon collectors approach with the recursive argument used to establish

the hitting times on the path. The outline here parallels Wilf[23].

Consider the point in the random walk on Cn at which the jth new vertex

has first been visited. Then the walk has visited j contiguous vertices which

form a path and is resting on the endpoint of the path. How long will it

take, on average, to visit the (j + 1)st vertex? We may consider the walk to

be on a path with j + 2 vertices having covered the vertices from 2 to j + 1

and resting at vertex j + 1. We then want to know: how long, on average,
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before the walk visits vertex 1 or vertex j + 2, whichever occurs first? If we

let c, represent the expected number of steps, starting at vertex r to first

visit either vertex 1 or j + 2 on such a path, then cl Cj+2 = 0 and for

1 <k<j+2,

Ck = 1) (k- + 1) + (I) (Ck+l + 1).

The solution to this recurrence relation is c = r- r 2 + (r - 1) (j + 2). Which

provides cj+1 = j.

Now the vertex cover time is easily computed.

n-1

C% =I j= •
j=2

Due to the symmetry of the cycle this, as well as all edge cover times, is

independent of the starting vertex. From now on we will assume the cycle is

labeled in the natural way and that all walks begin at vertex 1.

5.2 The Undirected Edge Cover Time of C.

Path results may also be used to compute the edge cover times for cycles. In

the case of the undirected edge cover time we do nothing more than extend

the connection above. In the directed case we need to use the more delicate

results established in Chapter 3. As we have done in the previous cases we

will calculate the edge cover time by first finding the vertex cover time and
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then analyzing the expected number of additional steps needed to complete

an edge cover. In Chapter 3 we pointed out that, the undirected edge cover

time of a tree is the same as the vertex cover time. This is not the case for

the cycle.

Theorem 5.1 The undirected edge cover time for On is

Proof

Upon completing a vertex cover of C,, say at vertex j, the only undirected

edge not yet traversed is either {j, j + 1} or {j, j- 1}. The expected number of

additional steps needed in order to traverse this last edge may be calculated

by considering a walk on a path containing n + 2 vertices. The walk on

the cycle may be considered to have been a walk which has visited vertices

{2,3,... ,n,Tn + 1} of this path and which is now located at vertex n + 1.

Then if we compute the expected amount of time necessary for such a walk

to either visit vertex 1 or vertex n + 2, whichever occurs first, then this will

be the expected number of steps necessary to traverse the remaining edge on

the cycle. The argument above shows that it takes n steps to reach either

vertex 1 or vertex n + 2 of the path. Combining this with the vertex cover
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time for C,, we have

~ CV±T :) ± (,-F1)C '-= C" + n = ()+ n = (n +

5.3 The Directed Edge Cover Time for Cn

Lovdsz and Winkler[19] point out that it is "folklore" that the probability

a particular vertex j : 1 is the last new vertex visited by a random walk

started at 1 on C is 1/(n - 1). The key to analyzing the directed edge cover

time is to realize that upon completing the vertex cover portion of the walk

the sequence of vertices visited may be mapped to a sequence describing a

vertex cover of P with the starting point determined by the vertex at which

the walk completes a vertex cover of C,. Using this fact we will be able to

relate the probability distribution for untraversed edges on the path to that

of edges on the cycle. We will then use this to determine lower and upper

bounds on the expected number of additional steps needed to complete an

edge cover after all the vertices have been visited at least once.

Theorem 5.2 The directed edge cover time for a simple random walk on C

is

(2) log n
Proof

75



73

5

Figure 5.1: Vertex cover walk of C8

Suppose we label P,, and C in the natural way. Also suppose that we take

a walk on C,, and it completes a vertex cover at vertex 2 < j _< n having

stepped to j from vertex j - 1. The probability that this occurs may be

determined by a simple probability tree analysis which yields (j- 1)/n(n- 1).

If we map vertex (j + k)modn on C, to vertex k on P,, so that 1 on C,

maps to n - j + 1 on P and j on C,, maps to n on Pn, then the sequence of

vertices visited on C, will correspond to a vertex cover walk on P started

at vertex n - j + 1 and ending at vertex n. A vertex cover walk on C8

is illustrated in figure 5.1, and the mapping to a vertex cover walk on P8 is

illustrated in figure 5.2. As a matter of fact this mapping describes a bijection

between vertex cover walks starting at vertex 1 and ending at j on C and

vertex cover walks on P,, starting at vertex n - j + 1 and ending at vertex n.
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Figure 5.2: Vertex cover walk from figure 5.1 mapped to vertex cover walk
of P8 ending at 8

Now consider how this walk on C, must have visited the vertices in the

cycle. In order to end a vertex cover at j stepping to it from j - 1 the walk

must have traveled back and forth to either side of the starting vertex until

it visited vertex j + 1. It then traveled back and forth, never proceeding

beyond j + 1 until it finally visited j for the first time from j - 1. This means

that all edges between vertex j + 1 and vertex 1 have been traversed in both

directions as illustrated by the walk in figure 5.1. Thus the only possible

edges not traversed during the vertex cover portion of the walk are directed

edges (j,j + 1), (j + 1,j), (j,j - 1), ... , (2, 1). Given the bijection between

walks on the cycle and walks on the path described above we can describe

the probability that t is the least integer such that edge (t, t - 1) is the closest

edge to vertex 1 not traversed during the vertex cover portion of the walk on

C, for 2 < t < j - 1. Using the notation of Section 3.4 this probability is

P(Xnn-j+l,n-j+t I A 1 - 1)7

77



If edge (t, t - 1) is the edge closest to vertex 1 not traversed so far, then

we may obtain an upper bound for the expected number of steps remaining

to complete an edge cover by the expected amount of time to traverse the

edges (j,j+ 1), (j+ 1,j), (j,j- 1), (j- 1,j-2), ... , (t+ 1,t), (t,t- 1)in

this particular order. Once again a recursive argument may be used to show

that the expected number of steps needed to traverse edge (s, s + 1) starting

at s on C,, is n + 1. It follows that the expected number of steps to traverse

these edges in the specified order is (j - t + 3)(n + 1).

Thus, given that edge (t, t- 1), 2 < t < j-1, is the closest edge to vertex 1

not yet traversed, an upper bound on the expected number of remaining steps

is A - n(5 .1)
(j - t + 3)(n + 1) PA(Xnj+l,n)j+t  5n.j+

If the closest edge to vertex I not traversed was (j, j-1), then an upper bound

on the expected number of steps remaining is 3(n + 1) and the probability

that this occurs is less than 1.

Putting this together with the probability that a walk does end a vertex

cover at j by stepping from j - 1, the additional number of steps needed is

bounded above by
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n ( - [3(n+ 1)E n n- 1
j=2 j- l n

j-1i-

+ E (j - t + 3)(n + 1)P(Xn-j+l,n-j+t I An-j+1)I (5.2)
t=2

Remembering the symmetry of Cn, this also describes a bound on the

additional number of steps needed for walks ending a vertex cover at j by

stepping from j+ 1. Thus an upper bound on the expected additional number

of steps needed to complete an edge cover, having visited all vertices at least

once, is twice the quantity in (5.2). Denote this value by An.

Using equation(3.23) yields

A± = 2( n-- 3(n+ 1) +E(j-t,+3 )(n+) n-1 x
j=2 t=2

p(X n -j-t I 1 -j+ t)

(( ( +) )
j=2 (j t nj t

+2 3(n+ 1) n____ (l n-j) t -1 x

j=2 t=2

p n-j+t 1 l"n-j+t 53
S(n-j+l,n-)j+t ] n-j+l ("

Note that since the first term in this sum is o(n 2/ log n) we need only

prove that the second term is 0(n 2/ log n). Also note that in the sum in
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this inequality the term with j 2 is zero, so the sum for which we desire a

bound is

Using equation(3.26) (5.4) becomes

4 ( n j 3 t =r =1

n- J-~T 2 (34k)

-4(72±1 E (f2- l-) E

A~ 3n ± ) 72-1) n 1

4 E Efr'-E(n80



and in Lemma 3.4 we have shown that g,-1 = O(n 2/ log n). Therefore the

expected number of steps needed to complete an edge cover after first visiting

all the vertices on Cn is O(n 2/ log n).

This upper bound was shown based on traversing the remaining directed

edges in a specific order. We may obtain a lower bound on the additional

number of steps needed by determining the edge closest to vertex 1 which has

not been traversed, and then computing the hitting time from our present

position back to traverse that edge. Simple recursive arguments show that

the hitting time from vertex s to traverse edge (t, t - 1), 2 < t < s - 1 is

(s - t + 1) (n - s + t + 1) steps. Thus a lower bound on the expected additional

number of steps to complete an edge cover is

i-InAn > 2 E Et= (j-t+l1)(n- j+ t+l1) n(n-1) j - x

0n j 1n 3 A' ± ) P X*+JtI ? 7 t). (5.6)
G t + I -j ,,-+t n -,-j+l

Once again using equation(3.26), and simplifying, (5.6) becomes

An >=2 n j-1 n - j + t+1 - t - r

-> E E ("- E,_l( - r -)
j=3 t=2 n r=l -~tr

(2)n j- t-

= EE E f:
- j=3 t=2 r=
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Using Corollary A.5 we then have

(2) : j-(1

8-2

L ~~~~ ~ ~ 2 ___________________



CHAPTER VI

QUESTIONS FOR FURTHER

STUDY

We established that S,, minimizes edge cover time for trees. Which class of

graphs minimizes edge cover time for all gTaphs? Which maximizes it?

Our results for edge cover time on trees seem to suggest that, for fixed n,

the more leaves a tree contains the smaller the number of steps needed to

complete a vertex cover walk to an edge cover walk. If one could prove

Brightwell and Winkler's conjecture that vertex cover time for trees is max-

imized by the path, then this observation would seem to indicate the same

could be proven for edge cover time.

Brightwell and Winkler[6] established that the maximum hitting time for

any graph on n vertices is obtained by a walk on the "lollipop" and has

order (4/27)n3 + o(n 3 ). Feige went on to prove that, the vertex cover time

for any graph on n vertices is (4/27)n3 + 0(n 2 5), which makes the lollipop

graph a candidate for the graph which maximizes vertex cover time. Since
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Zuckerman's bound proves that edge cover time is 0(n') it seems plausible

that the "lollipop" may maximize edge cover time as well. Is there a way to

prove this? Simulations on this graph, for small n, seem to indicate that the

expected additional number of steps needed to complete a vertex cover to an

edge cover is 0(n 2 ). Can this be proved, perhaps using methods similar to

those used to establish our global upper bound?

Bounds for vertex cover time tighter than those developed by Matthews

and Aleliunas have been established based on knowing the maximum degree,

average degree, or that the graph is regular. Can improved bounds be derived

for edge cover time based on these parameters?

The blanket time provides a measure of when the walk has "distributed"

itself evenly amongst the vertices of the graph. If we define a directed and

undirected "edge blanket time" in a similar manner, can we establish bounds

on it?

Winkler and Zuckerman[25] use ad hoc methods to prove that the blanket

time for the path and cycle is O(Cv). Their results only provide a bound on

the constant of e4s . Intuitively it seems to us that the constant in both cases

should be small. This is because a walk on the path started at an endpoint

spends much of its time in the "first half" of the path and very little in the

"second half". Thus if a walk is allowed to complete say 4 vertex covers
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then it seems likely that it has distributed itself evenly over both ends of the

path and the only possible area of difficulty would be the number of visits to

the vertices in the center. However, computer simulations, using code which

has proved very accurate in our study of vertex and edge cover time, shows

the ratio B 11 2/C ' slowly growing from approximately 2.4 for a path of 10

vertices to 4.9 for a path on 100 vertices. In the case of a cycle the ratio

grows from 2.7 for a cycle on 5 vertices to 6.2 for a cycle on 200 vertices. The

simulations do not give any evidence that this growth is ending. If the results

of Winkler and Zuckerman are correct, then what is the correct constant? Is

it possible that there is no constant and in fact the ratio is unbounded?

We have established tight bounds on the edge cover time for a number

of trees and the cycle. Aldous' and Zuckerman's results combine to provide

a tight bound for the clique. Can our techniques be used to provide tight

bounds on other classes of graphs?

Many of the results for vertex cover time have been generalized to cases

in which each edge is given a weight and the probability of traversing any

particular edge out of a vertex is not uniform. Is there a way to do this in

the edge cover time case applying our results?
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APPENDIX A

PROPERTIES OF {fn}

In Sections 3.1-3.3 we considered random walks on P , started from an end-

point. We assumed the path was labeled in the natural way with the start

point being vertex 1 and the other endpoint being vertex n. For each edge

(k, k - 1), 2 < k < n, we determined that the probability the edge was not

traversed prior to the walk completing a vertex cover was 1/(n - k + 1).

Given that edge (k, k - 1) was not traversed prior to the completion of the

vertex cover, we then calculated the probability that it was the first such

edge and labeled that probability fk-. In this section we collect a number

of facts about the sequence {ff} which have proved useful in our analysis of

the edge cover time of random walks on graphs.

After defining the f,, in Chapter 3 we noted that they fulfilled identity(3.5).

This gave us a recursive method for computation of { }, and made it clear

that this is a sequence of rational numbers. Using Mathematica it was an easy

task to compute the values of the sequence up to f750. Table(A.1) contains
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fl f2 f fh fA fA f7 Af f fio

1 1 5 251 95 1 5257 1070017 25713
2 12 8 720 288 60480 17280 3628800 89600

Table A. 1: Exact values of fi - flo

the values for f,, 1 < n < 10.

A second identity, in this case involving a weighted sum of the harmonic

numbers, may be derived directly from identity(3.5). Specifically,

k + 
1,

j=1 k=1j=1

fk (= n,k=1 j=k j-k + 1 n

n

E fkh,,-k = n. (A.1)
k=1

The connection between the elements of {f,} and the harmonic numbers is

pervasive.

The values in Table A. 1 clearly suggest that the f,, form a decreasing

sequence. This turns out to be the case.

Lemma A.1 The sequence, {fn}, is a strictly decreasing sequence.

Proof

Using identity(3.5) we have for n > 1,) fk- ( 1 ) k 0
k=l -k+2
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So

1= 1k=1n-+1(fk -fk+l)= -. ~ (A.2)

Writing s= -f +l yields

l (-k±l Sk-1 (A.3)

Then for n > 2

n1 : k-( n k + 1) (n k)k

< (n )-I1

n k=1l -

Replacing the sum by (A.3) yields

1 n-i
Sn < -

n + 1n 2

Thus Vn > 2,
1

s, > n(n 1+ 1) > 0. (A.4)

Combining this with the fact that s, = 1/2 we have Vn > 1,

fn- f+1 > 0.

Using the fact that the sequence is strictly decreasing we can determine

an upper bound on f, .
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Lemma A.2 For all n > 2,

(A.5)

Proof

Using inequality(A.4) and iterating we have

(1 - A) > (1 - fl,) +
n(n - 1)2

1 1
(1A-) > (1 -f-2) + +n(n - 1)2 (n - 1)(n - 2)2

n-2 1( f - ) > (I fl) + E In ,( -k )

k=0 (n -k) -k-l) 2

It follows that

( f) > ((I - -- 0 + E
k=--2 k k=2 j=O n j( )

- (h,- 1) - (1 - fn)

Z(h - I+ 1) (n -j)(. -j -1)
j=0

This then implies that

-hf > -1 + E (hn - hj+i) (n- j)(n- j 1)2
j=0

Multiplying this inequality by -1/hn and discarding all but the last term in

the sum on the righthand side we determine that

f<(1-I) 1
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It is worth noting that one can improve on this bound slightly by using

equation(3.13). If one integrates this quantity using bounds similar to those

in the argument at (3.16) one obtains the bound

1h Va > 1.

It appears that establishing a lower bound for f,, is not quite so easy.

Lemma A.3

To facilitate obtaining such a bound we introduce a new quantity. Define

qn by

lqn = (A.7)
k=1 n-k+l hk

Claim

((I. - 1)h,,- o(1M

Proof

qnhn hr, [n (hn]±-) ih
.0n-k+1 h

Sk.1 (n-k 1 C  hk
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E~ n-k+1 h

(1n'-1 1 )(h, - hk) (A.8)

n k=2 ?n- k+1

Since hn/n = o(1) it suffices to show that the sum is bounded above by a

function that approaches 0 as n grows. We will do this by first splitting this

sum into three parts. For simplicity of notation let N = [jI. Since these

quantities contain the harmonic numbers we will make frequent use of the

inequalities
1

lnn+ y< h, < Inn +-+n

where 'y = limn-_o (hn - Inn) is EulCr's constant.

(A.) ( hk"
k=2 nk1 h

There are less than ' terms in this sum. For large n, and in the range

2<k<N,

(n- k+ 1) <h n'

and

(h,, - hk) (h. -3
2

Thus

N ( h n -<k (h n 3
n-k n- hk Fn 2 - 2)

ln- 
o(1).
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n-N-1(I 
)

(B-) E (n-ky47 ( h h k

k=N+l

In this sum

(h. - hk) ( hN+)hk )<\hN-l) hN+l

(1nn+ -ln(N+))
- ln(N + 1)

-L 1+ 21nlnn
- 2 n nn (A.9)

In n - 21m nn

Also

E ( 1) h.-N- hN+2k= g+l n -k + I -

< ln(n-N)+
1

+ 1 -ln(N±1)
2n(1~

<n

1
+ +2In lnn

2n (1 - 1 - I2)

1

<2n (1 - ) +2 1nlnn . (A.10)
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Combining inequalities(A.9) and (A.10) we have

:=N~ (~±~)(hn -hk)k=N+l nk + 1

I +_2 Inlnn ) n-N-1 1_ 1)

lnn-21nlnn\ l (n-k+

- nn- 21nlnn) 2n(I-.hl) + 21nlnn

- o(i).

n-1

(C.) z (h_k) h .-)E nk \ hk ]
k=n-N

Here we have

(h.n-hk) < (hn -hn-N

Inn (lnn In(1- -))1)
nn

in (n _ nw_ )

12n ( h2

Ijnn +ln(1j4-,

However ln(x) < x - 1. So

~1 + 1h, - hk < 2n, Tr-

hk Iinn~ln(1- 14

Thus

n1 h, - hk
E(-k+1)( hk )k=n-N
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kn-

2n i7 n-Inn + In n1 - n
2n1i+ 1 n

1 -7 1 )--2
I<knn + In -- In  )

-Inn +ln i-- Iln

o(1).

Combining A, B, and C with equation(A.8) we have the desired result. N

Proof of Lemma A.3

We know f, = 1/hi, f2 = (1 - 1/4)(1/h 2) and in Lemma A.2 we es-

tablished that Vn > 2, fn < (1 - 1/2n)(1/h,). From identity(3.5) we know

that

fn [@ l - [ fn--l + A1fn-2 +''+ (nl_ f2 + (1fl].

Thus Vn > 3
r(1 ( 1 1 ) 3 11 )

fR 1- [ h1 2(n- ()h , (h 2 - 2(n-2)h.+2 ) ±"

1 (2) h2)1 1( ) 1 ]

"+ 1sf 1 1 '

>1 +_ __ _+.+ __ +R1) 1 (3) 1 (n1) h2 (n) 1

S 1 - 3- n- - h-21

(12) n1 1 +11

94



+ (n-,1 ,) h,21

Then subtracting 1/h,, from both sides of this inequality yields

1
fn > 1-q,,

+ (1) E1) (n1) - (1) (1 2) hfl-

+ (n'1) (21)h,2
which leads to the conclusion that

1
fn,> 1- + •

Using the conclusion of the claim proved above we have the desired result

1

(1 - o(1)) I.

n-1

In Section 3.3 we needed to bound the quantity g, = E (n-j)fj. Using
j=l

results from Jordan[17] we proved an upper bound of O(n 2 / log n). We also

claimed that it is possible to lower bound the quantity by Q(n 2/ log n). Below

is the proof of that claim.

Lemma A.4
n-1

g = (n - j)f = Qlogn (A. 11)
j= 1
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Proof

The proof will be by induction on the "forward differences" of g,,. Ag -,
n

gn - gn-i = E fk denotes the first forward difference of gn and A(2)g,
k=O

A(Ag,- 2) - fn the second forward difference. As a result of Lemma A.3 we

know that f, > (1/2)(1/hn),Vn > 1. Claim Ag=_l > (1/2)(n/h,).

A1 fl f2

3
2
(1) 4

> 3

Now suppose the claim is true Vj < n.

A(2) gn2 = Agn_ 1 - Agn- 2  A

implies that

Aqn-1 = Ag- 2 + f .

But by the inductive hypothesis

(2 n - 1  (2 1
Ag -f- f () -n-i - -

> (1)
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Now that we know Ag,_ - () - the rest of the induction is straight-

forward.
1

gi~l>-.
4'

Suppose gj > () E-, Vj < n. Then

gn - gn-1 = Agn- 1 _ ),-

implies

gn .1

S(1) (n- 1)2 + (1) n4 hn-I 2 hn

(I)(n - 1)21 + (n - 1)2h,- I+ 2nhn-I
4 hnhn, _

> __n 2 + l  n 2

Thus g,, Q(n 2/ logn), as desired. M

n
In the course of the proof above we established that Agn-, E fk >

k=O

(1/2)(n/h,). Using an argument similar to that of Lemma 3.4 one can prove

that Ag = O(in/ log n). Thus an immediate corollary to Lemma A.4 is

Corollary A.5
ns n

EZfk= o10>
k=O
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Eric Richard Bussian was born on February 26th, 1958 in Summit, N.J.

He graduated from Charleston Catholic High School, Charleston, W.V. in

1976 and accepted an appointment to the United States Air Force Academy.

He was awarded his Bachelor of Science degree and commissioned a Second

Lieutenant in the United States Air Force in May 1980. He was then posted

to Columbus Air Force Base, Columbus, Ms. to enter USAF pilot training.

In July 1981 2Lt. Bussian completed Undergraduate Pilot Training and

was assigned to Sheppard AFB, Wichita Falls, Tx. as an instructor pilot

in the Euro-NATO Joint Jet Pilot Training program: a program designed

to provide primary flight training to most of the pilots from the NATO air

forces. His instructional abilities were recognized when he was named the

number one graduate of his pilot instructor training class.

After completing his tour of duty at Sheppard AFB, Captain Bussian was

reassigned to Clark Air Base, Republic of the Philippines, as a cargo pilot.

He flew the C-130E/H aircraft and became a Command Post Operations

Officer.
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